Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Am J Transplant ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20231266

ABSTRACT

T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.

2.
NPJ Vaccines ; 8(1): 70, 2023 May 17.
Article in English | MEDLINE | ID: covidwho-2322738

ABSTRACT

Cytokines are regulators of the immune response against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the contribution of cytokine-secreting CD4+ and CD8+ memory T cells to the SARS-CoV-2-specific humoral immune response in immunocompromised kidney patients is unknown. Here, we profiled 12 cytokines after stimulation of whole blood obtained 28 days post second 100 µg mRNA-1273 vaccination with peptides covering the SARS-CoV-2 spike (S)-protein from patients with chronic kidney disease (CKD) stage 4/5, on dialysis, kidney transplant recipients (KTR), and healthy controls. Unsupervised hierarchical clustering analysis revealed two distinct vaccine-induced cytokine profiles. The first profile was characterized by high levels of T-helper (Th)1 (IL-2, TNF-α, and IFN-γ) and Th2 (IL-4, IL-5, IL-13) cytokines, and low levels of Th17 (IL-17A, IL-22) and Th9 (IL-9) cytokines. This cluster was dominated by patients with CKD, on dialysis, and healthy controls. In contrast, the second cytokine profile contained predominantly KTRs producing mainly Th1 cytokines upon re-stimulation, with lower levels or absence of Th2, Th17, and Th9 cytokines. Multivariate analyses indicated that a balanced memory T cell response with the production of Th1 and Th2 cytokines was associated with high levels of S1-specific binding and neutralizing antibodies mainly at 6 months after second vaccination. In conclusion, seroconversion is associated with the balanced production of cytokines by memory T cells. This emphasizes the importance of measuring multiple T cell cytokines to understand their influence on seroconversion and potentially gain more information about the protection induced by vaccine-induced memory T cells.

3.
Clin Kidney J ; 16(3): 528-540, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2252817

ABSTRACT

Background: Patients with chronic kidney disease (CKD) or kidney replacement therapy demonstrate lower antibody levels after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination compared with healthy controls. In a prospective cohort, we analysed the impact of immunosuppressive treatment and type of vaccine on antibody levels after three SARS-CoV-2 vaccinations. Methods: Control subjects (n = 186), patients with CKD G4/5 (n = 400), dialysis patients (n = 480) and kidney transplant recipients (KTR) (n = 2468) were vaccinated with either mRNA-1273 (Moderna), BNT162b2 (Pfizer-BioNTech) or AZD1222 (Oxford/AstraZeneca) in the Dutch SARS-CoV-2 vaccination programme. Third vaccination data were available in a subgroup of patients (n = 1829). Blood samples and questionnaires were obtained 1 month after the second and third vaccination. Primary endpoint was the antibody level in relation to immunosuppressive treatment and type of vaccine. Secondary endpoint was occurrence of adverse events after vaccination. Results: Antibody levels after two and three vaccinations were lower in patients with CKD G4/5 and dialysis patients with immunosuppressive treatment compared with patients without immunosuppressive treatment. After two vaccinations, we observed lower antibody levels in KTR using mycophenolate mofetil (MMF) compared with KTR not using MMF [20 binding antibody unit (BAU)/mL (3-113) vs 340 BAU/mL (50-1492), P < .001]. Seroconversion was observed in 35% of KTR using MMF, compared with 75% of KTR not using MMF. Of the KTR who used MMF and did not seroconvert, eventually 46% seroconverted after a third vaccination. mRNA-1273 induces higher antibody levels as well as a higher frequency of adverse events compared with BNT162b2 in all patient groups. Conclusions: Immunosuppressive treatment adversely affects the antibody levels after SARS-CoV-2 vaccination in patients with CKD G4/5, dialysis patients and KTR. mRNA-1273 vaccine induces a higher antibody level and higher frequency of adverse events.

4.
Lancet Infect Dis ; 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2266264

ABSTRACT

BACKGROUND: An urgent need exists to improve the suboptimal COVID-19 vaccine response in kidney transplant recipients (KTRs). We aimed to compare three alternative strategies with a control single dose mRNA-1273 vaccination: a double vaccine dose, heterologous vaccination, and temporary discontinuation of mycophenolate mofetil or mycophenolic acid. METHODS: This open-label randomised trial, done in four university medical centres in the Netherlands, enrolled KTRs without seroconversion after two or three doses of an mRNA vaccine. Between Oct 20, 2021, and Feb 2, 2022, 230 KTRs were randomly assigned block-wise per centre by a web-based system in a 1:1:1 manner to receive 100 µg mRNA-1273, 2 × 100 µg mRNA-1273, or Ad26.COV2-S vaccination. In addition, 103 KTRs receiving 100 µg mRNA-1273, were randomly assigned 1:1 to continue (mycophenolate mofetil+) or discontinue (mycophenolate mofetil-) mycophenolate mofetil or mycophenolic acid treatment for 2 weeks. The primary outcome was the percentage of participants with a spike protein (S1)-specific IgG concentration of at least 10 binding antibody units per mL at 28 days after vaccination, assessed in all participants who had a baseline measurement and who completed day 28 after vaccination without SARS-CoV-2 infection. Safety was assessed as a secondary outcome in all vaccinated patients by incidence of solicited adverse events, acute rejection or other serious adverse events. This trial is registered with ClinicalTrials.gov, NCT05030974 and is closed. FINDINGS: Between April 23, 2021, and July 2, 2021, of 12 158 invited Dutch KTRs, 3828 with a functioning kidney transplant participated in a national survey for antibody measurement after COVID-19 vaccination. Of these patients, 1311 did not seroconvert after their second vaccination and another 761 not even after a third. From these seronegative patients, 345 agreed to participate in our repeated vaccination study. Vaccination with 2 × mRNA-1273 or Ad26.COV2-S was not superior to single mRNA-1273, with seroresponse rates of 49 (68%) of 72 (95% CI 56-79), 46 (63%) of 73 (51-74), and 50 (68%) of 73 (57-79), respectively. The difference with single mRNA-1273 was -0·4% (-16 to 15; p=0·96) for 2 × mRNA-1273 and -6% (-21 to 10; p=0·49) for Ad26.COV2-S. Mycophenolate mofetil- was also not superior to mycophenolate mofetil+, with seroresponse rates of 37 (80%) of 46 (66-91) and 31 (67%) of 46 (52-80), and a difference of 13% (-5 to 31; p=0·15). Local adverse events were more frequent after a single and double dose of mRNA-1273 than after Ad26.COV2-S (65 [92%] of 71, 67 [92%] of 73, and 38 [50%] of 76, respectively; p<0·0001). No acute rejection occurred. There were no serious adverse events related to vaccination. INTERPRETATION: Repeated vaccination increases SARS-CoV-2-specific antibodies in KTRs, without further enhancement by use of a higher dose, a heterologous vaccine, or 2 weeks discontinuation of mycophenolate mofetil or mycophenolic acid. To achieve a stronger response, possibly required to neutralise new virus variants, repeated booster vaccination is needed. FUNDING: The Netherlands Organization for Health Research and Development and the Dutch Kidney Foundation.

5.
Clin Infect Dis ; 2022 Jul 23.
Article in English | MEDLINE | ID: covidwho-2232914

ABSTRACT

BACKGROUND: In the general population, illness after infection with the SARS-CoV-2 Omicron variant is less severe compared with previous variants. Data on the disease burden of Omicron in immunocompromised patients are lacking. We investigated the clinical characteristics and outcome of a cohort of immunocompromised patients with COVID-19 caused by Omicron. METHODS: Solid organ transplant recipients, patients on anti-CD20 therapy, and allogenic hematopoietic stem cell transplantation recipients on immunosuppressive therapy infected with the Omicron variant, were included. Patients were contacted regularly until symptom resolution. Clinical characteristics of consenting patients were collected through their electronic patient files. To identify possible risk factors for hospitalization, a univariate logistic analysis was performed. RESULTS: A total of 114 consecutive immunocompromised patients were enrolled. Eighty-nine percent had previously received three mRNA vaccinations. While only one patient died, 23 (20%) required hospital admission for a median of 11 days. A low SARS-CoV-2 IgG antibody response (<300 BAU/mL) at diagnosis, higher age, being a lung transplant recipient, more comorbidities and a higher frailty were associated with hospital admission (all p < 0.01). At the end of follow-up, 25% had still not fully recovered. Of the 23 hospitalized patients, 70% had a negative and 92% a low IgG (<300 BAU/mL) antibody response at admission. Sotrovimab was administered to 17 of them, of which one died. CONCLUSIONS: While the mortality in immunocompromised patients infected with Omicron was low, hospital admission was frequent and the duration of symptoms often prolonged. Besides vaccination, other interventions are needed to limit the morbidity from COVID-19 in immunocompromised patients.

6.
Transplant Direct ; 8(11): e1387, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2087946

ABSTRACT

Studies have shown that coronavirus disease 2019 (COVID-19) vaccination is associated with a lower humoral response in vulnerable kidney patients. Here, we investigated the T-cell response following COVID-19 vaccination in kidney patients compared with controls. Methods: Patients with chronic kidney disease (CKD) stage G4/5 [estimated glomerular filtration rate <30 mL/min/1.73 m2], on dialysis, or living with a kidney transplant and controls received 2 doses of the mRNA-1273 COVID-19 vaccine. Peripheral blood mononuclear cells were isolated at baseline and 28 d after the second vaccination. In 398 participants (50% of entire cohort; controls n = 95, CKD G4/5 n = 81, dialysis n = 78, kidney transplant recipients [KTRs] n = 144)' SARS-CoV-2-specific T cells were measured using an IFN-γ enzyme-linked immune absorbent spot assay. Results: A significantly lower SARS-CoV-2-specific T-cell response was observed after vaccination of patients on dialysis (54.5%) and KTRs (42.6%) in contrast to CDK G4/5 (70%) compared with controls (76%). The use of calcineurin inhibitors was associated with a low T-cell response in KTRs. In a subset of 20 KTRs, we observed waning of the cellular response 6 mo after the second vaccination, which was boosted to some extent after a third vaccination, although T-cell levels remained low. Conclusion: Our data suggest that vaccination is less effective in these patient groups, with humoral nonresponders also failing to mount an adequate cellular response, even after the third vaccination. Given the important role of T cells in protection against disease and cross-reactivity to SARS-CoV-2 variants, alternative vaccination strategies are urgently needed in these high-risk patient groups.

7.
Transplantation direct ; 8(11), 2022.
Article in English | EuropePMC | ID: covidwho-2073065

ABSTRACT

Background. Kidney transplant recipients (KTRs) are still at risk of severe COVID-19 disease after SARS‑CoV‑2 vaccination, especially when they have limited antibody formation. Our aim was to understand the factors that may limit their humoral response. Methods. Our data are derived from KTRs who were enrolled in the Dutch Renal Patients COVID-19 Vaccination consortium, using a discovery cohort and 2 external validation cohorts. Included in the discovery (N = 1804) and first validation (N = 288) cohorts were participants who received 2 doses of the mRNA-1273 vaccine. The second validation cohort consisted of KTRs who subsequently received a third dose of any SARS-CoV-2 vaccine (N = 1401). All participants had no history of SARS-CoV-2 infection. A multivariable logistic prediction model was built using stepwise backward regression analysis with nonseroconversion as the outcome. Results. The discovery cohort comprised 836 (46.3%) KTRs, the first validation cohort 124 (43.1%) KTRs, and the second validation cohort 358 (25.6%) KTRs who did not seroconvert. In the final multivariable model‚ 12 factors remained predictive for nonseroconversion: use of mycophenolate mofetil/mycophenolic acid (MMF/MPA);chronic lung disease, heart failure, and diabetes;increased age;shorter time after transplantation;lower body mass index;lower kidney function;no alcohol consumption;≥2 transplantations;and no use of mammalian target of rapamycin inhibitors or calcineurin inhibitors. The area under the curve was 0.77 (95% confidence interval [CI], 0.74-0.79) in the discovery cohort after adjustment for optimism, 0.81 (95% CI, 0.76-0.86) in the first validation cohort, and 0.67 (95% CI, 0.64-0.71) in the second validation cohort. The strongest predictor was the use of MMF/MPA, with a dose-dependent unfavorable effect, which remained after 3 vaccinations. Conclusions. In a large sample of KTRs, we identify a selection of KTRs at high risk of nonseroconversion after SARS-CoV-2 vaccination. Modulation of MMF/MPA treatment before vaccination may help to optimize vaccine response in these KTRs. This model contributes to future considerations on alternative vaccination strategies.

8.
Cells ; 11(9):1419, 2022.
Article in English | ProQuest Central | ID: covidwho-1837586

ABSTRACT

Mesenchymal stromal cells have been the subject of an expanding number of studies over the past decades. Today, over 75,000 publications are available that shine light on the biological properties and therapeutic effects of these versatile cells in numerous pre-clinical models and early-phase clinical trials. The massive number of papers makes it hard for researchers to comprehend the whole field, and furthermore, they give the impression that mesenchymal stromal cells are wonder cells that are curative for any condition. It is becoming increasingly difficult to dissect how and for what conditions mesenchymal stromal cells exhibit true and reproducible therapeutic effects. This article tries to address the question how to make sense of 75,000, and still counting, publications on mesenchymal stromal cells.

10.
Transplantation ; 106(4): 821-834, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1511132

ABSTRACT

BACKGROUND: In kidney patients COVID-19 is associated with severely increased morbidity and mortality. A comprehensive comparison of the immunogenicity, tolerability, and safety of COVID-19 vaccination in different cohorts of kidney patients and a control cohort is lacking. METHODS: This investigator driven, prospective, controlled multicenter study included 162 participants with chronic kidney disease (CKD) stages G4/5 (eGFR < 30 mL/min/1.73m2), 159 participants on dialysis, 288 kidney transplant recipients, and 191 controls. Participants received 2 doses of the mRNA-1273 COVID-19 vaccine (Moderna). The primary endpoint was seroconversion. RESULTS: Transplant recipients had a significantly lower seroconversion rate when compared with controls (56.9% versus 100%, P < 0.001), with especially mycophenolic acid, but also, higher age, lower lymphocyte concentration, lower eGFR, and shorter time after transplantation being associated with nonresponder state. Transplant recipients also showed significantly lower titers of neutralizing antibodies and T-cell responses when compared with controls. Although a high seroconversion rate was observed for participants with CKD G4/5 (100%) and on dialysis (99.4%), mean antibody concentrations in the CKD G4/5 cohort and dialysis cohort were lower than in controls (2405 [interquartile interval 1287-4524] and 1650 [698-3024] versus 3186 [1896-4911] BAU/mL, P = 0.06 and P < 0.001, respectively). Dialysis patients and especially kidney transplant recipients experienced less systemic vaccination related adverse events. No specific safety issues were noted. CONCLUSIONS: The immune response following vaccination in patients with CKD G4/5 and on dialysis is almost comparable to controls. In contrast, kidney transplant recipients have a poor response. In this latter, patient group development of alternative vaccination strategies are warranted.


Subject(s)
COVID-19 , Kidney Transplantation , Renal Insufficiency, Chronic , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity , Kidney Transplantation/adverse effects , Prospective Studies , Renal Dialysis , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Vaccination
12.
J Med Internet Res ; 22(10): e22068, 2020 10 08.
Article in English | MEDLINE | ID: covidwho-863364

ABSTRACT

BACKGROUND: The COVID-19 pandemic has markedly affected renal transplant care. During this time of social distancing, limited in-person visits, and uncertainty, patients and donors are relying more than ever on telemedicine and web-based information. Several factors can influence patients' understanding of web-based information, such as delivery modes (instruction, interaction, and assessment) and social-epistemological dimensions (choices in interactive knowledge building). OBJECTIVE: The aim of this study was to systemically evaluate the content, delivery modes, and social-epistemological dimensions of web-based information on COVID-19 and renal transplantation at time of the pandemic. METHODS: Multiple keyword combinations were used to retrieve websites on COVID-19 and renal transplantation using the search engines Google.com and Google.nl. From 14 different websites, 30 webpages were examined to determine their organizational sources, topics, delivery modes, and social-epistemological dimensions. RESULTS: The variety of topics and delivery modes was limited. A total of 13 different delivery modes were encountered, of which 8 (62%) were instructional and 5 (38%) were interactional; no assessment delivery modes were observed. No website offered all available delivery modes. The majority of delivery modes (8/13, 62%) focused on individual and passive learning, whereas group learning and active construction of knowledge were rarely encountered. CONCLUSIONS: By taking interactive knowledge transfer into account, the educational quality of eHealth for transplant care could increase, especially in times of crisis when rapid knowledge transfer is needed.


Subject(s)
Coronavirus Infections/epidemiology , Internet , Kidney Transplantation , Knowledge , Living Donors/education , Patient Education as Topic , Pneumonia, Viral/epidemiology , Telemedicine , Betacoronavirus , COVID-19 , Humans , Pandemics , Patient Education as Topic/standards , Patient Education as Topic/statistics & numerical data , SARS-CoV-2 , Search Engine , Uncertainty
13.
Am J Transplant ; 20(7): 1896-1901, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-125541

ABSTRACT

The current coronavirus disease 2019 (COVID-19) pandemic requires extra attention for immunocompromised patients, including solid organ transplant recipients. We report on a case of a 35-year-old renal transplant recipient who suffered from a severe COVID-19 pneumonia. The clinical course was complicated by extreme overexposure to the mammalian target of rapamycin inhibitor everolimus, following coadministration of chloroquine and lopinavir/ritonavir therapy. The case is illustrative for dilemmas that transplant professionals may face in the absence of evidence-based COVID-19 therapy and concurrent pressure for exploration of experimental pharmacological treatment options. However, the risk-benefit balance of experimental or off-label therapy may be weighed differently in organ transplant recipients than in otherwise healthy COVID-19 patients, owing to their immunocompromised status and potential drug interactions with immunosuppressive therapy. With this case report, we aimed to achieve increased awareness and improved management of drug-drug interactions associated with the various treatment options for COVID-19 in renal transplant patients.


Subject(s)
Coronavirus Infections/complications , Coronavirus Infections/therapy , Everolimus/pharmacokinetics , Kidney Failure, Chronic/complications , Kidney Transplantation , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , Transplant Recipients , Adult , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Betacoronavirus , COVID-19 , Chloroquine/administration & dosage , Chloroquine/pharmacokinetics , Drug Combinations , Drug Interactions , Everolimus/administration & dosage , Humans , Immunocompromised Host , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Kidney Failure, Chronic/surgery , Lopinavir/administration & dosage , Lopinavir/pharmacokinetics , Male , Netherlands , Pandemics , Radiography, Thoracic , Ritonavir/administration & dosage , Ritonavir/pharmacokinetics , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL